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ABSTRACT 
 
We describe the most recent version of the Gravity-wave Regional Or Global Ray Tracer (GROGRAT), a ray-
tracing model of the propagation and amplitude evolution of gravity waves within any gridded numerical 
representation of the Earth’s lower and/or middle atmosphere. Here we describe new features of the GROGRAT 
code and some recent results, including a global simulation using the CIRA-86 climatological middle 
atmosphere and some preliminary simulations of regional mountain-wave activity. 
 
INTRODUCTION 
 
The general circulation of the middle atmosphere is sensitively dependent on the global morphology of Eliassen-
Palm (EP) flux divergence, which is dominated by gravity-wave dissipation in the mesosphere and equatorial 
stratosphere (e.g., Mengel et al., 1995). Yet synoptic-scale data on gravity-wave activity has only begun to 
emerge recently (Tsuda et al., 1994; Fetzer and Gille, 1994; Allen and Vincent, 1995; Eckermann et al., 1995). 
As this observational picture develops, it is important that there are parallel developments of global models of 
gravity-wave activity, so that our understanding of the gravity-wave data bases improves, leading to improved 
simulations of gravity waves, and hence of middle atmosphere circulations. 
 
Ray-tracing models have shown promise in simulating the behavior of gravity waves within both atmospheric 
and oceanic environments (e.g., Dunkerton and Butchart, 1984; Schoeberl, 1985; Henyey et al., 1986; 
Eckermann, 1992). To assess the full capability of the ray-tracing method, a three-dimensional global-scale 
nonhydrostatic ray-tracing model of atmospheric gravity-wave propagation and activity was developed by 
Marks and Eckermann (1995). This model, which we now refer to as GROGRAT (version 1.0), proved useful in 
simulating a range of gravity-wave effects. Thus we have continued development of the GROGRAT code, and 
this paper reports on new features of and results from the most recent release (version 2.7) of the model. 
 
FORMULATION AND RECENT IMPROVEMENTS 
 
The theory and computational implementation of version 1.0 of GROGRAT were described in detail by Marks 
and Eckermann (1995). Briefly, gravity-wave group trajectories, wavenumber refraction and amplitude 
evolution are computed within a gridded numerical representation of the atmosphere by integrating a general set 
of ray equations. The atmosphere is assumed to vary in all three spatial dimensions. Global atmospheres are 
fitted with spherical harmonics, which are interconnected in the vertical with cubic spline fits of the spherical 
harmonic coefficients. Regional atmospheric “cubes” are fitted with cubic splines in all three spatial dimensions. 
The model also computes gravity-wave amplitudes along the ray path using wave-action conservation principles, 
and includes parameterizations of turbulent and radiative wave damping, and wave-amplitude saturation. 
 
We have since upgraded GROGRAT to “next generation” status (version 2). The major purpose of this upgrade 
was to make the model fully four-dimensional, so that time variations of the background atmosphere could also 
be included. The ray-tracing equations were upgraded to respond appropriately to time variations of the 
atmosphere (Eckermann and Marks, 1996), which were fitted and interpolated using cubic splines. A host of 
other upgrades have also been made. The major scientific ones are: 
 



• provision for a background vertical velocity field, with the gravity-wave ray-tracing equations generalized 
accordingly (e.g., Jones, 1969); 

• provision for model atmospheres which are gridded on pressure or log-pressure surfaces. These atmospheres 
are now regridded internally by GROGRAT onto a regular geometrical height grid; 

• provision for both “forwards” (in time) and “backwards” ray-tracing experiments; 
• incorporation of the scale-dependent CO2 and O3 radiative-damping parameterizations of Zhu (1993), which 

extend from the ground to 120 km; 
• reduction of the climatological eddy diffusivity profile in the model by a factor of 3, based on recent 

reappraisals of observational data sets (Hocking, 1996); 
 
Development of GROGRAT continues, and further upgrades are likely. The status of the model can be 
monitored by accessing the GROGRAT homepage at http://uap-www.nrl.navy.mil/dynamics/html/grograt.html.  
 
RECENT RESULTS 
 
Global Gravity-Wave Propagation Through the 1986 COSPAR International Reference Atmosphere (CIRA-86)  

 
(a) Ray Positions at 65 km
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In the following GROGRAT simulation, each ray was 
assigned an initial horizontal velocity amplitude u’ = 0.1 
m s-1, and one of 7 horizontal wavelengths λh, 5 ground-
based horizontal phase speeds ch (0-40 m s-1), and 8 
equispaced propagation azimuths φ (0-360o). This 
yielded 280 different rays, which were launched at z0 = 5 
km from 88 different locations over the globe (shown 
with shaded circles in panel a), giving 24640 rays in all. 
Figure 1 shows results for rays reaching z = 65 km using 
global winds and temperatures derived from the CIRA-
86 fields for January (Marks, 1989), which GROGRAT 
fitted with spherical harmonics truncated at order 8 both 
zonally and meridionally. The wind fields near the 
equator are inaccurate, so the equatorial results should 
be discounted. These simulations also did not permit 
cross-polar propagation, and so wave transmission at the 
poles may be underestimated.  
 
The combined results in Figure 1b show interesting 
similarities with gravity-wave data for January-February 
1979 inferred from global temperature measurements 
from LIMS (Figures 19-20 of Fetzer and Gille (1994)): 
specifically, wave amplitudes in the Northern 
Hemisphere are larger and more zonally asymmetric 
than those in the Southern Hemisphere. The zonal 

asymmetries, which arise from the filtering effects of stratospheric Rossby waves (Dunkerton and Butchart, 
1984; Schoeberl, 1985; Marks and Eckermann, 1995), differ in form from those reported by Fetzer and Gille 
(1994). This may be due in part to differences between the climatological CIRA winds and the time-varying 
flow patterns during the warming events of January-February 1979 (see, e.g., Dunkerton and Butchart, 1984; 
Figures 25-26 of Fetzer and Gille, 1994). The simulated differences in wave amplitudes between the summer 
and winter hemispheres are consistent with the theory of Eckermann (1995). 

CIRA January

(b) Amplitude-Weighted Ray Counts at 65 km
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Fig. 1. (a): locations of rays which propagate to z = 
65 km. Circles mark launch locations at z0 = 5 km; 
(b) number of rays (scaled by their final horizontal 
velocity amplitude) which reach  z = 65 km.   

 
Figure 2 shows histograms of λh, ch, and φ for rays reaching 65 km. The peaks in each panel show the various 
values that were assigned at z0 = 5 km. We note preferential transmission of λh values of ~50-100 km into the 
mesosphere, but no preferential removal of ch values globally. Remarkably, however, no ch = 0 waves propagate 
to 65 km anywhere in the Southern Hemisphere. More large-ch waves reach 65 km in the Southern (summer) 
Hemisphere than in the Northern Hemisphere, which is consistent with the need for nonzero phase-speed waves 
in models of the summer mesospheric circulation (e.g., Jackson, 1993). As in the earlier two-dimensional 
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hydrostatic simulations (Eckermann, 1992), westward 
(eastward) φ’s dominate in the summer (winter) 
hemisphere due to filtering by the underlying 
stratospheric flow, and  meridionally-aligned waves are 
efficiently transmitted into the mesosphere in both 
hemispheres. 
 
Mountain Wave “Forecasts” 
 
Figure 1a shows that waves which reach 65 km in the 
Northern Hemisphere remain “clumped” above their 
launch spots, due to the strong transmission of stationary 
(ch = 0) waves. Thus, geographical “hot spots” in 
stationary mountain-wave (MW) activity can be 
transmitted quasi-vertically to produce further zonal 
asymmetries in mesospheric wave activity in the Northern 
Hemisphere in January (e.g., Bacmeister, 1993), possibly 
accounting for further differences between Figure 1b and 
the data of Fetzer and Gille (1994).  
 
To study this further, GROGRAT has been used with a 
ridge database and an extended MW-forcing model 
(based on the model of Bacmeister et al. (1994)) which 
gives an inital z0, u’, λh and φ for each forced wave. 
Figure 3 shows predicted MW ray paths over New 
Zealand for the 24th and 25th October, 1994. Winds and 
temperatures came from six-hourly GASP analyses 
(Seaman et al., 1995), and total wind speed is contoured 
at 7 km (top row) and at 172oE (bottom row). We note 
large changes in predicted MW behavior on each day: 
early on the 24th, there is strong production on the South 
Island which propagates well into the stratosphere, 
whereas late on the 25th there is more MW production on 
the North Island, and this activity is confined to the 
troposphere. Stars on the ray path indicate likely 
saturation and turbulence production. While these results 
are preliminary, comparisons with stratospheric aircraft 
data have been encouraging so far, so that this model may 
ultimately provide computationally-inexpensive MW-
turbulence forecasts to aid flight planning, for example 
(Bacmeister et al., 1994). 

Fig. 2. Histograms of ray parameters at 65 km: (a) 
horizontal wavelengths; (b) ground-based horizontal 
phase speeds; (c) horizontal wave-vector directions. 
The binning interval is linear in (b)-(c), and 
logarithmic (in wavenumber) in (a) .  

 
SUMMARY 
 
The examples discussed here represent only a selection of 
problems to which GROGRAT can be applied. For 
example, GROGRAT has also proved useful as a purely 
theoretical tool, providing important insights into gravity-
wave tidal interactions in the mesosphere (Eckermann and 
Marks, 1996; see also Zhong et al., 1995) and interactions 
among a random spectrum of atmospheric gravity waves 
(Eckermann, 1996). It provides a general yet flexible 
means of simulating gravity-wave propagation and 
amplitude variability within arbitrary atmospheric 
environments. Further enhancements of and experiments 
with GROGRAT are either planned or in progress, and 
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Fig. 3. Simulated mountain-wave production and ray 
paths (starred curves) over New Zealand on 24th 
October (0500 GMT) and 25th October (2300 GMT), 
1994. Contours are total wind speed (in m s-1). Land 
and orographic features are silhouetted.  



will be reported upon in due course.  
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